
Eight development wastes Version 0.4, Copyright © 2011 Mark Seuffert, Sweden

1.

Feature creep

Functionality that is rarely used, added without any
demand or by wrong assumptions. This happens when
features are added that nobody really wants, instead of
collaboration with customers and end users.

What you can do: It's important to know goals, context
and priorities in development work.

5.

Information loss

Knowledge that is lost by inadequate communication or
changing teams. This happens when face-to-face
conversation is replaced by documents, important
decisions are not written down or only in people's heads.

What you can do: Create easy access to experts and
information.

2.

Inconsistency

Extra work that is caused by doing similar things
differently. It takes time to understand how different parts
fit together, even more time if they need to be changed or
harmonised in order to work well together.

What you can do: When in doubt aim for consistency,
apply the same patterns and standards at all times.

6.

Technical debt

Extra work accumulated by development shortcomings.
With focus on short term results complexity increases,
quality decreases, which causes more maintenance and
complete rewrites.

What you can do: Neglected design is expensive design,
spend time on maintainability and refactoring.

3.

Waiting time

Hindrance by waiting times and interruptions. When time
is spent waiting for activities and people it prevents more
tasks from being finished, in addition has a constant
stop-and-go a negative impact on people's productivity.

What you can do: Visualise work flow, show where
bottlenecks and partly finished work occur.

7.

Dispersion

Hindrance by separation with long feedback loops.
Overall productivity drops with specialised or distributed
teams, it's better to have crossfunctional teams with
collaboration between knowledge domains.

What you can do: Avoid sub-optimisation and bring
passionate people together.

4.

Defect handling

Effort for identifying and fixing defects. It's more
expensive to catch bugs late in development, at a time
when fixing them is harder because details are not
familiar any more and problems affect more people.

What you can do: Instead of mass testing, build quality in
right from the start and hold regular design/code reviews.

8.

Confining structure

Surroundings difficult to change or with insufficient
support. Warning signals to look for are heavy
management, overly stringent processes, unused talent
and unhappy employees.

What you can do: A healthy system is able to adapt, learn
and improve continuously.

Definition: Waste being everything you could remove from a system to get the same
(or better) result. Tip: Identify what creates value and what doesn't in the long run, then
remove unnecessary or unproductive things from your daily work.

History: The categorisation of waste (Japanese "Muda") has its origin in Lean
Manufacturing (Shingo & Ohno) and Lean Software (Poppendiek). The Agile Manifesto
knows the principle of maximizing the amount of work not done.

